Evaluation of mineral oils as matrices for AISI/SAE–1020 steel naphthenic corrosion study

Author:

Conde-Rodríguez G R,Sanabria-Cala J A,Mancilla Estupiñán R A,Laverde Cataño D A,Núñez Castañeda M C

Abstract

Abstract Petrochemical industry has suffered great economic impact due to light crude oil reserves reduction, so refineries have been processing high acidity heavy crude oils. Studies of corrosion caused by naphthenic acids are interfered by presence of other corrosive agents contained in real crude oils, so naphthenic phenomenon must be isolated using synthetic crude oils. For this reason, in present work two high purity mineral oils were used to evaluate their efficiency as synthetic crude oil matrices in AISI/SAE–1020 steel naphthenic corrosion study. Temperature levels evaluated were 200 °C, 250 °C, and 300 °C, while exposure times evaluated were 5, 10 and 15 hours. Surface morphological characterization of AISI/SAE–1020 steel was carried out using scanning electron microscopy and X–ray diffraction. Gravimetric tests showed that AISI/SAE–1020 steel naphthenic corrosion rate increases with temperature and exposure time for one of the synthetic crude oils. However, results obtained for the other synthetic crude oil did not show increasing behaviour due to presence of sulfur traces in the oil, which caused an interference with AISI/SAE–1020 steel naphthenic corrosion study, reducing the reliability of gravimetric results so they cannot be extrapolated to operating conditions in distillation units.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference16 articles.

1. Correlation for predicting corrosivity of crude oils using proton nuclear magnetic resonance and chemometric methods;Mejía;Energy Fuels,2015

2. Review of naphthenic acid corrosion in oil refining;Slavcheva;British Corrosion Journal,1999

3. Factors controlling naphthenic acid corrosion;Tumbull;Corrosion,1998

4. Analysis of the heavy oil distillation cuts corrosion by electrospray ionization FT–ICR mass spectrometry, electrochemical impedance spectroscopy, and scanning electron microscopy;Freitas;Applied Surface Science,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3