Assessment method for 220 kv cable outer sheath damage based on bp neural network

Author:

Li Hongke,Xu Han,Wang Siyi,Zhai Yuxin,Liu Bokai

Abstract

Abstract 220 kV high-voltage submarine cables find extensive application in offshore wind power transmission systems. Ensuring the safe operation of these cables involves accurately detecting and assessing the extent of damage to the cable sheath. This study begins by constructing a finite element simulation model for the cable based on its actual model. Subsequently, a method for evaluating the cable sheath’s damage state is proposed by using a BP neural network. The network takes ambient temperature, current, and six-point temperatures of the damaged section as input characteristics. Results indicate a correct rate of 94.29% for the BP neural network, demonstrating its effective discrimination of cable sheath damage levels. This approach introduces a novel evaluation method for cable sheath damage.

Publisher

IOP Publishing

Reference10 articles.

1. Ampacity Estimation for Submarine Power Cables Installed in Saturated Seabed-Experimental Studies [J];Duraisamy;IEEE Transactions on Industry Applications,2020

2. Fault detection and cause analysis of 500 kV cable outer sheath in Guangzhou Pumped Storage Power Plant A;Wang;power grid technology,2008

3. High Voltage Cable Outer Sheath Fault and Its Countermeasures;Liu;High Voltage Technology,2001

4. An overview of the current status of partial discharge measurements on AC high voltage cable accessories;Eigner;IEEE Electrical Insulation Magazine,2016

5. AC Voltage Withstand Test Method and Risk Suppression Measures of Energized GIS Based on Phase-frequency Control;Zhao;IEEE Transactions on Power Delivery,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3