Friction and Wear Properties of Si3N4/TiC Ceramic Composite under Nano Lubrication

Author:

Kumar Sanjay,Wani M. F.,Sehgal Rakesh,Mushtaq S.

Abstract

Abstract The present research evaluated the tribological behavior of Silicon Nitride based composite reinforced with 1 wt. % of Titanium Carbide under dry and lubrication conditions. The lubricant base oil used in this study is 85W140; with nanoparticles additives poly tetra flouro ethylene and Copper (PTFE & Cu) Nanoparticles were added in the base oil to review the performance of the nanoparticles as additives. Ball-on-disc wear tests were conducted to explore the effects of Nano additive in lubricant for ceramic-ceramic tribo-pair. Results showed that friction and wear decreased using nanoparticle in the lubricant oil, as compared to, dry as well as base lubricant oil conditions. It was reported that 0.1 wt. % of PTFE Nano particles and 0.3 wt. % of Cu Nano particles shows minimum value for the coefficient of friction (COF). Rheological studies were also done on these lubricants samples. The findings from the present work encourage the modification of nanoparticle based lubricant to improve the friction and wear properties and to improve the life of the component.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3