In-depth resistance analysis of REBCO tape joints with indium insert and solders

Author:

Hayasaka R,Ito S,Kato T,Yokoe D,Hashizume H

Abstract

Abstract Joints between REBCO (rare-earth barium copper oxide) tapes with low joint resistance are crucial for many superconducting applications. Joining REBCO tapes with indium insert (In-joint) is a promising joining method to fabricate low resistive joints at low temperatures (20–120°C). This study investigated the joining conditions of In-joints such as pickling, surface roughness, joining time, and temperature. The joint resistivity (product of joint resistance and joint area) was successfully reduced to 22–30 nΩcm2 at 77 K in self-field. The constitutive factors of the joint resistivity were analysed separately along with the crosssectional observations. In this study, the interface resistivity of the REBCO tape was measured as 8.5 nΩcm2 for one REBCO tape by the previously proposed method. The resistivity of the joining interface Cu/In was calculated as <3 nΩcm2 by subtracting the other resistivities from the entire joint resistivity. This result reveals the lower limit of the joint resistivity: the sum of the resistivity (nΩcm2) of indium (measurable by thickness), the resistivity of Cu/In (<3nΩcm2), and the interface resistivity of the REBCO tape (measurable beforehand). Furthermore, we demonstrated a lower and less varied joint resistivity of In-joints than those of the soldered joints.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Report on Progress Towards a 10 kA Transformer-Rectifier Flux Pump;IEEE Transactions on Applied Superconductivity;2024-08

2. Research on Soldering Technology of YBCO Splice Joint;IEEE Transactions on Applied Superconductivity;2023-11

3. Bending and Twisting Characteristics of REBCO Lap Joint With Indium;IEEE Transactions on Applied Superconductivity;2023-08

4. Initial Study on Press Welding With Indium Applied to High-Temperature Superconducting DC Feeder Cables;IEEE Transactions on Applied Superconductivity;2023-08

5. Evaluation of Magnetic Field Dependence of the Interface Resistivity in REBCO Tape;IEEE Transactions on Applied Superconductivity;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3