Simulation of the Thermal Performance of HTS Coated Conductors for HVDC SFCL

Author:

de Sousa W T B,Kudymow A,Strauss S,Palasz S,Elschner S,Noe M

Abstract

Abstract Within the EU-funded project FastGrid a resistive superconducting fault current limiter for DC-application is actually under development. To reduce substantially the amount of deployed superconducting tape an increase of voltage per length in the limitation case is needed. Moreover, the resistive transition (quench) should be fast and uniform. In the present work, the thermal behavior of three different architectures of coated conductors are investigated by means of transient simulations. The first architecture is composed by an additional Hastelloy shunt layer, which is supposed to avoid overheating of the conductor during fault limitation. The other architectures include layers of silver and copper as stabilizers. Our parameter study including the geometries of the different layers and the inhomogeneity of the critical current density of the superconducting tape shall lead to an optimized tape layout. First comparisons with experiment indicate, that, with the first architecture, electric field strength up to 100 V/m should be within reach.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3