Investigation of trade-off solution in mechanical edge joint of STARS conductors

Author:

Sato S,Ito S,Hashizume H

Abstract

Abstract Mechanical edge joints of stacked tapes assembled in rigid structure (STARS) conductors have been proposed to be applied to remountable high-temperature superconducting fusion magnets. Our previous study showed the joint resistance decreases with an increase in stabilizer thickness and joint pressure. However, this induces a trade-off between joint resistance and critical current due to increasing strain in the REBCO tape during bending (winding) for the conductors. Furthermore, an appropriate joint surface structure has not been discussed about taking into account a remountable joint. Based on the above background, this study first numerically evaluated the joint resistance depending on the structure of REBCO conductors with copper jackets. The results showed the copper jacket does not efficiently decrease the joint resistance compared to a copper stabilizer. Furthermore, to make strains lower than irreversible strain limit, the joint length should be longer than 500 mm. In addition, the joint surface structure was investigated based on joint testing and observing the surface, from which it was proposed that protective layer on the joint surface is needed to remove the remaining indium and keep the flatness of the joint surface. Therefore, a new structure for the issue was proposed for a remountable joint and the reattaching performance was evaluated experimentally.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3