Study of Wall Strain during LaNi5 Alloy’s Hydrogen Absorption/Desorption Process

Author:

Yin Xuwen,Cao Shuaijie,Yang Fusheng,Imin Rahmatjan

Abstract

Abstract An experimental LaNi5 alloy’s hydrogen absorption/desorption system was established to explore the strain generation process mechanism on the reactor wall during the cyclic hydrogen absorption/desorption process of LaNi5 alloy powders at room temperature after different cycles and periods. On this basis, the influence of the hydrogen pressure on the wall strain of the reactor was verified. Results showed that with the increase in cycles, the reactor wall was subjected to an expansion strain, and the closer to the reactor bottom, the greater the strain value. As the hydrogen pressure grew from 3.0 to 4.0 MPa, the strain value at the reactor bottom increased obviously. Still, it did not grow during cycling experiments with hydrogen, indicating that the agglomeration phenomenon was mainly attributed to the pulverization effect after hydrogen absorption by the alloy instead of the gas pressure itself. After 24 cyclic reactions, the wall strain at the 1/5 position from the bottom experienced changes in growth laws since the thermal strain was not enough to influence the expansion strain triggered by agglomeration, and the closer to the reactor top, the more greatly the wall strain was influenced by reaction heat.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3