Unknown Protocol Identification Based on Improved K-Means++ Algorithm

Author:

Feng Tian,Man Dapeng,Fu Hao

Abstract

Abstract In recent years, the gradual popularization of mobile terminals and the vigorous development of the network have spawned the birth of a new Internet structure and promoted the growth of network traffic. Behind such a large network, effective supervision of network traffic is the cornerstone of network security protection. At present, many studies on the direction of network supervision focus on the analysis of unknown network protocol types. The protocol identification method combined with machine learning is a hot topic in this kind of research. This method extracts data stream features and builds data sets, using machine learning algorithms. The model analyzes unknown network traffic and can obtain better recognition results than traditional network protocol analysis methods. Aiming at the problem of unknown traffic identification, this paper proposes a reasonable unknown traffic identification algorithm. The feature normalization preprocessing, feature selection, LOF outlier analysis, etc. are introduced. The clustering process uses the K-Means++ algorithm, and the maximum local reachable density point in the outlier analysis is used to realize the initial cluster center point. Accurate positioning.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference9 articles.

1. Data mining for the Internet of Things: literature review and challenges [J];Feng;International Journal of Distributed Sensor Networks,2015

2. The many facets of internet topology and traffic [J];Alderson;Networks & Heterogeneous Media,2017

3. An association analysis and identification for unknown protocol of bitstream oriented [J];Zheng;Concurrency & Computation Practice & Experience,2016

4. Feature identification of unknown protocol [C];Jie,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3