Gesture Recognition of sEMG Signals Based on CNN-GRU Network

Author:

Bai Duanyuan,Zhang Dong,Zhang Yongheng,Shi Yingjie,Wu Tingyi

Abstract

Abstract To improve the accuracy of surface electromyogram signal (sEMG) gesture recognition algorithm and solve the problem of manually extracting many features, this paper proposes a deep neural network-based gesture recognition method. A neural network integrating CNN and GRU was designed. The 8-channel sEMG data collected by the MYO armband is input to the CNN for feature extraction, and then the obtained feature sequence is input to the GRU network for gesture classification, and finally the recognition result of the gesture category is output. The experimental findings that the proposed technology reaches 76.41% recognition accuracy on the MyoUP dataset. This demonstrates the practicality of the suggested plan.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference15 articles.

1. Identifying User Suitability in sEMG Based Hand Prosthesis Using Neural Networks[J];Emayavaramban A;Current signal transduction therapy,2019

2. Wireless sEMG-based identification in a virtual reality environment[J];Li;Microelectronics Reliability,2019

3. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network[J];Xiaolong,2017

4. Movements Classification of Multi-Channel sEMG Based on CNN and Stacking Ensemble Learning[J];Shu;IEEE Access,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3