Cooperative Spectrum Sensing Algorithm Based on Eigenvalue Fusion

Author:

Guo Qianrui,Guo Bin,Li Xiangkun,Ma Weijiao

Abstract

Abstract A novel algorithm is introduced to improve collaborative spectrum sensing under low cognitive capabilities and insufficient signal-to-noise ratio. The algorithm is based on the difference of random matrix eigenvalues and uses the theory of random eigenvalues and the extreme distribution of the minimum eigenvalue. It makes use of the average, both arithmetic and geometric, as well as the minimum and maximum values of eigenvalues as the detection metric. It calculates the fusion power parameter through local energy spectrum sensing. Simulation results demonstrate that the algorithm outperforms the DMM algorithm and the NMME algorithm under users with low cognitive capabilities and Insufficient signal-to-noise ratio, making it more suitable for low signal-to-noise ratio environments.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference10 articles.

1. Eigenvalue-Based Multiple Antenna Spectrum Sensing: Higher Order Moments[J];Sedighi;IEEE Transactions on Wireless Communications,2017

2. Optimal Eigenvalue Weighting Detection for Multi-Antenna Cognitive Radio Networks[J];Liuc;IEEE Transactions on Wireless Communications,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3