Novel modelling of metal atoms diffusion and ion transport in ECR plasma relevant to ion sources and in-plasma nuclear physics studies

Author:

Pidatella A,Galatà A,Mishra B,Naselli E,Celona L,Lang R,Maimone F,Mauro G S,Santonocito D,Torrisi G,Mascali D

Abstract

Abstract Metals can be injected into electron cyclotron resonance ion sources (ECRIS) via different techniques, among which resistive ovens are used to vaporize neutral materials, later captured by the energetic plasma that will step-wise ionize them, hence giving multiply charged ion beams for accelerators. Recently, PANDORA, a novel ECR plasma trap, has been conceived to perform interdisciplinary research spanning from nuclear physics to astrophysics, where in-plasma high charge states of metallic species are demanded. However, a full knowledge on the vaporization method and on the coupling of neutral atoms with plasma and its overall dynamics is still not available. Simulations, hence, are of fundamental relevance to improve the overall efficiency, reduce consumption of rare expensive isotopes, and to improve the ion source performance. We present a numerical study about metallic species suitable for oven injection in ECRIS, focusing on metals diffusion, transport, and wall deposition under molecular flow regime. We studied the metal dynamics with and without plasma. Results underline the plasma role on a space-dependent conversion yield, reflecting the strongly inhomogeneous ECR plasma. The plasma and its parameters have been modelled using an established self-consistent particle-in-cell model. The numerical tool is conceived for the PANDORA plasma trap but can be extended to other ECR plasmas and traps. As test cases we studied the 134Cs and 48Ca radioisotopes, as metals of interest for the modern nuclear physics. A focus is given on the β-decaying 134Cs, as an application case for PANDORA, providing quantitative estimates of the γ-detection signal-poisoning effect by neutral metals deposition at the chamber wall.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3