Author:
Lapierre A.,Son H.-J.,Ringle R.,Schwarz S.,Villari A. C. C.
Abstract
Abstract
The Reaccelerator (ReA) of the Facility for Rare-Isotope Beams (FRIB) at Michigan State University uses a Beam Cooler/Buncher (BCB) and an Electron-Beam Ion Trap (EBIT) as a charge-breeding injector system. The rare isotopes produced by In-flight Separation are selected by the Advanced Rare Isotope Separator (ARIS) and stopped in a helium gas cell. Long-lived and stable-isotope beams can also be extracted from a Batch-Mode Ion Source (BMIS). The continuous beams transported at low energy to ReA are injected into the BCB. The pulsed beams are then injected into the EBIT, charge bred, ejected, and accelerated by ReA’s LINAC. The EBIT electron current (300 - 600 mA) is a factor that limits its capacity to ∼2×1010 elementary charges, which restricts the maximum EBIT-extracted rates to less than 2×1010 particles per second for light ions. An upgrade of the EBIT electron gun is expected to provide 2 A in current. In parallel, a High-Current Electron-Beam Ion Source (HCEBIS) is being commissioned. The HCEBIS can presently provide an electron current of 2 A. An upgrade will increase the current to 4 A. The implementation of these two upgrades is expected to allow for maximum rates to be ∼1011 pps, compatible with FRIB projected rates and user demands. We review the high-current capabilities and upgrades of ReA’s charge-breeding system.