Training and validation of a commercial deep learning contouring platform

Author:

Koo J,Caudell J,Feygelman V,Moros E,Latifi K

Abstract

Abstract We present our experience with training and validation of a commercially available deep learning algorithm for organs at risk(OAR) auto-contouring. Computed tomography(CTs) with OARs from a cohort of 213 head and neck(H&N) patients were used for training the deep learning model. A separate cohort of 85 CTs and structure sets was used for validation. All OARs (13) were contoured by a single physician. Metrics such as the DICE similarity coefficient (DSC), Jaccard similarity coefficient (JSC), and volumetric difference (VD) were used to analyze contouring variation. Mean DSC and JSC values ranged 0.48-0.89 and 0.32-0.8, respectively, depending on OAR. A DSC value ≥0.7 indicated low inter-observer variability. In our study, all but one of the contours were above this threshold. DSC for the middle pharyngeal constrictor had the lowest value of all the contours. This may be due to the small volume of this structure. Qualitative assessment of auto-segmented structure samples confirmed the reliability of DSC by demonstrating the compatibility between the expert’s evaluation and DSC values. Overall, we found that deep learning auto contouring is a useful tool to speed up the process of contouring in radiotherapy treatment planning.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3