Evaluation of electric field distortion at the Gaisberg Tower for continuing current measurements in lightning discharges

Author:

Kalecz G,Kiss I,Nemeth B

Abstract

Abstract Upward lightning requires a distinct approach compared to downward (cloud-to-ground) lightning. Some lightning strikes are triggered by objects on the ground itself. The occurrence of such strikes depends on various factors, including the object’s geometric dimensions, structure, relative location within its environment, as well as the distribution and location of electrical charges within the thundercloud. This phenomenon takes place more and more often due to the spread of wind farms and higher buildings. In this article, simulation and calculation is carried out regarding the Gaisberg Tower in Austria which is actively used as a measurement and research site for lightning purposes. A finite element simulation is carried out to assess the electric field characteristics in the geometry. The close electric field measurement instruments are located 170 m away from the tower on an enclosure which must be considered during data analysis. The result of the created model is validated by former measurement data which confirms the arrangement of the model and creates the opportunity to directly transform the values of the electric field from the field mill to the tower during appropriate conditions.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3