Laser ablation in liquid

Author:

Petrov Yu V,Khokhlov V A,Zhakhovsky V V,Inogamov N A

Abstract

Abstract Laser ablation in a liquid (LAL) is an important and perspective way to create nanoparticles (NPs) necessary for modern technologies. LAL is not fully understood. Deep understanding is necessary to optimize processes and decrease high price of the LAL NPs. Today there are two groups of studies: in one of them scientists go from analyzing of bubble dynamics (thus they proceed from the late stages), while in another one, scientists investigate early stages of ablation. In the present paper we consider the process as whole: from ablation and up to formation of a bubble and its inflation. Thus we cover extremely wide range of spatiotemporal scales. We consider a role of absorbed energy and duration of pulse (femtosecond, multi-picosecond, nanosecond). Importance of supercritical states is emphasized. Diffusive atomic and hydrodynamic mixing due to Rayleigh–Taylor instability and their mutual interdependence are described. Liquid near contact with metal is heated by dissipation in strong shock and due to small but finite heat conduction in liquid; metal absorbing laser energy is hot and thus it serves as a heater for liquid. Spatial expansion and cooling of atomically mixed liquid and metal causes condensation of metal into NPs when pressure drops below critical pressure for metal. Development of bubble takes place during the next stages of decrease of pressure below critical parameters for liquid and below ambient pressure in liquid. Thin hot layer of liquid near contact expands in volume to many orders of magnitude filling the inflating bubble.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3