Topic-to-Essay Generation with Corpus-Based Background Information

Author:

Luo Dan,Ning Xinyi,Wu Chunhua,Wang Maonan,Wu Jing

Abstract

Abstract This study aims to generate more topic-related and coherence essays based on user-defined topic words. Existing research generates essays without considering the semantic information from the corpus. However, the corpus contains statistical relationships of words which can be used to guide the model to generate more coherent and fluent essays. To fill this gap, we propose a corpus-based topic-to-essay generation model (C-TEG). We elaborately devise a background network based on the co-occurrence relationships of words from the corpus. The empirical results demonstrate that our approach has achieved 4.14 average score in subjective evaluation and a better BLEU-2 score, which shows that our model is able to generate more topic-related and coherent text than existing models.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference12 articles.

1. Modeling concepts and their relationships for corpus-based query auto-completion;Rossiello;Open Computer Science,2019

2. Generating topical poetry;Ghazvininejad,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TAFM: Topic-Attention FM-encoder for Text Generation;2022 7th IEEE International Conference on Data Science in Cyberspace (DSC);2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3