Round Traffic Sign Detection Algorithm

Author:

Huang Yinrong,Wang Bing,Yuan Xiemin

Abstract

Abstract Traffic signs are an important part of autonomous driving and intelligent transportation. It provides instructions for pedestrians and vehicles and is critical to road traffic safety. However, existing detection algorithms cannot achieve real-time high-precision detection. Therefore, this paper proposes an algorithm that combines traditional methods with deep learning to detect circular traffic signs. Based on the HSV color space, the red and blue channel images are separated, and the candidate regions of the original image are extracted using the Hough transform. The shallow convolutional neural network (CNN) classifier rejects not traffic signs and classifies traffic signs. Experiments show that the algorithm is real and effective. On the CPU platform, the average accuracy rate is 96.2%, and the detection speed reaches 0.3 s / frame. Under the condition of ensuring the average accuracy rate, the detection speed is greatly reduced. The algorithm achieves the fastest speed, which makes real-time high-precision detection possible. The algorithm is more suitable for vehicle embedded systems.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference9 articles.

1. Vision-based traffic sign detection and analysis for intelligent driver assistance systems[C];Mogelmose;Perspectives and survey. IEEE Trans. Intell. Transp. Syst.,2012

2. Real-time detection and recognition of road traffic signs[J];Greenhalgh;Intelligent Transportation Systems,2012

3. Color transformation for improved traffic sign detection[C];Creusen

4. Detection of Traffic Signs in Real-World Images;Houben,2013

5. A new approach in road sign recognition based on fast fractal coding[J];Pazhoumand-dar;Neural Computing and Applications,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3