Evolution mechanism of functional groups during coal chemical looping combustion

Author:

Kuang Cao,Wang Shuzhong,Zou Xiangbo,Sun Jingli,zhao Jun,Ye Ji,Qin Shiwei,Chen Gongda

Abstract

Abstract Chemical looping combustion (CLC) plays a vital role in coal combustion which released pure CO2 in the exhaust gas with low energy consumption. Researchers have developed over 1000 oxygen carriers (OCs) to enhance the properties of OCs. This study focus on the microstructural changes of coal during CLC process which could provide the performance improvement direction for OCs. Results showed that the phenolic -OH group can easily be removed by CuO while the free -OH group and the self-associating -OH group are hard to be consumed by the lattice oxygen in CuO at 800 °C, showing good stability in CLC process. Aliphatic hydrocarbons could be consumed in the gas phase rapidly. The functional group of C=O maintains high reactivity with CuO which explains why the addition of CO2 promotes the reaction rate in coal CLC. But C=C group was nonpolar bond and hard to be consumed while the -CH2 and -CH3 group and C-O-C group showed good reactivity with CuO. Higher reaction temperature affords higher reactivity of coal CLC process. But the -OH group changed slowly at higher temperature which could because that higher temperature makes the organic big molecular of the coal char decomposed and produce more -OH group.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3