Automatic Machine Learning Method for Hyper-parameter Search

Author:

Su Minglan,Liang Baolin,Ma Sicong,Xiang Chao,Zhang Chaoying,Wang Jianxiu

Abstract

Abstract Automatic Machine Learning (AutoML) uses automated data-driven methods to realize the selection of hyper-parameters, neural network architectures, regularization methods, etc., making machine learning techniques easier to apply and reducing dependence on experienced human experts. And hyper-parameter search based on automatic machine learning is one of the current research hotspots in the industry and academia. We mainly introduce the hyper-parameter search framework based on automatic machine learning and the common hyper-parameter search strategies. Combined with specific data sets, the classification accuracy of the model under different hyper-parameter search strategies is compared to find the model parameter configuration that can maximize the classification accuracy. Compared with the experience-based parameter adjustment method, the hyper-parameter search based on automatic machine learning can reduce labor costs, improve training efficiency, and automatically construct a dedicated convolutional neural network to maximize the model effect.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference24 articles.

1. Automatic convolutional neural architecture search for image classification under different scenes[J];Weng;IEEE Access,2019

2. Taking human out of learning applications: A survey on automated machine learning[J];Yao,2018

3. Algorithms for hyper-parameter optimization[C];Bergstra,2011

4. Deep face recognition using imperfect facial data[J];Elmahmudi;Future Generation Computer Systems,2019

5. Arabic Voice Recognition Using Fuzzy Logic and Neural Network[J];Eljawad,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3