Helmet wear detection based on neural network algorithm

Author:

Cao Ruiyun,Li Hongxiang,Yang Banglie,Feng Ao,Yang Jie,Mu Jiong

Abstract

Abstract Wearing safety helmet correctly is an effective means to reduce the accident rate and ensure the safety of construction personnel. But in the complex work site, the helmet detection task will face a variety of challenges. This paper uses YOLOV4’s deep neural network architecture and makes fine-tuning and improvement according to the characteristics and difficulties of this task, proposes a new helmet detection system, and achieves 95.1% accuracy. The application can timely and accurately detect whether the personnel wear the helmet correctly, which is of great significance for ensuring construction safety in practical work.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Safety helmet wearing detection based on image processing and machine learning;Li,2017

2. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks IEEE;Ren;Trans. Pattern Anal. Mach. Intell.,2017

3. Mask R-CNN IEEE;He,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of People Both Wearing Medical Mask and Safety Helmet;Engineering Cyber-Physical Systems and Critical Infrastructures;2023

2. Improved Helmet Detection Model Using YOLOv5;Intelligent Computing and Networking;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3