Automated Quadruped Robot Simulation using Internet of Things and MATLAB

Author:

Ray Richik,Shanker Rishita,Gupta Harsh,Sharan Mohit,Mohanty Swagatika

Abstract

Abstract In this paper, a MATLAB Simulink model of a Quadruped Robot is presented alongside its remote, control and monitor user interface that has been developed by using the fundamentals of Internet of Things on a Node-Red Flow and the FRED-Cloud Server. Robotics and Automation over the recent years have developed exponentially and hence have been a key factor in the rise of Industry 4.0 which has usurped manual supervision and operation in industrial and manufacturing processes around the globe. The design and creation of technologically advanced robots integrated with computer-based software for their automation has not only successfully made the tasks facile to manage within short spans of time, but also has increased the efficiency notably. The stability and mobility of quadruped robots is considered to be ideal on differing terrains with minimal subtle changes, thereby making it an asset. Internet of Things on the other hand, has paved its way over the control of robots as well, with its unparalleled benefits. This paper is focused on the design and execution of the Quadiuped model which includes the observation of the various significant graphs achieved post simulation with respect to electrical values such as power and current consumption, and a visual animation of the robot running in the workspace. Furthermore, a single platform is developed and displayed that allows a user to log in for security puiposes and thereby, operate and monitor the functions and conditions of the bot easily, ranging from remote visual support, directional integrity, damage control and more, without the need of multiple platforms to carry out varying tasks with respect to control.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formation of a Mechanism-Adaptive Setting Trajectory for the Movement of the Characteristic Point of an Industrial Robot Gripper;2022 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2022-05-16

2. IoT based Voice Controlled Home Assistance Hexapod;2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2022-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3