Structural and Magnetic Properties of Nano Ferrite for Magnetoelectric Applications

Author:

Hemeda O M,Tawfik A,Mostafa M,Zaki M,Abd El Ati M I

Abstract

Abstract A Series of ferrite samples Ni0.1 Cu0.2 Zn0.7-x Mgx Fe2O4 (where x = 0, 0.15, 0.25, 0.35, 0.45, 0.55 and 0.7) were synthesized using auto combustion flash method. The samples were annealed at 600 °c for 2 hours to eliminate the foreign phases of the constituent nitrate and internal stress. The purity of phase structure was confirmed by x-ray diffraction. Some structural and microstructural parameters like porosity, x-ray density, crystallite size and lattice constant were deduced from x-ray. Scanning electron microscope (SEM) analysis reveals that the grains are separated by pores in all samples and the average grain size decreases with increasing Mg content. Magnetic properties such as coercivity (Hc), saturation magnetization (Ms) and retentivity (Mr) were measured from M-H loops. The magnetization curves were characterized by low coercivity indicating that our samples are soft magnetic material. Both saturation magnetization and coercivity increase by increasing Mg ions where Ms reaches maximum value at x = 0.35 then decrease for higher Mg content.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3