Magnetic structure and UHF conducting properties of composite films (CoFeZr+Al2O3) and (CoNbTa+SiO2)

Author:

Kotov L N,Lasek M P

Abstract

Abstract Composite films of A series of compositions [(Co0.45Fe0.45Zr0.10)x + (Al2O3)(1 – x)/5], x = 0.25-0.66 and B series of compositions [(Co0.86Nb0.12Ta0.02)x+(SiO2)(1–x)/3], x=0.14-0.78 were investigated. Images of magnetic micro- and nanostructures of the A, B series composite films were obtained. At small x≤0.3, we observe a chaotic spread of magneto-metallic nanoparticles in a dielectric matrix. In the range 0.30<x<0.55, we observe a mixture of metallic and dielectric microparticles. At large x>0.6, we observe a chaotic scattering of dielectric nanoparticles in a magneto-metallic matrix. We obtained dependences of the specific impedance modulus of composite metal-dielectric films on the current frequency and on the concentration of the metal alloy of A, B series films. The analysis of the spectra showed that films in the frequency range from 0.1 to 3 GHz could exhibit three behaviors of the impedance spectra. For films with x up to the percolation threshold, a capacitive character is observed. The impedance in the field of percolation processes is capacitive, inductive or mixed character. After the percolation threshold, the impedance has an inductive character, and the frequency-dependent character of the magnetic permeability of the films can make a large contribution to the behavior of the spectra.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3