Creation of a nickel composite using surface structuring of the reinforcing phase with titanium carbide nanostructures to improve strength properties

Author:

Smirnov V M,Morozov P E,Kudymov V K,Dermenji A S,Sidorov Y V

Abstract

Abstract The development of metal matrix composite (MMC) materials is one of the demanded areas of research in materials science. In line with this trend, there is an increasing interest in nickel-based MMC materials, which have already become classic in science and technology. This is due to the high demand for Ni-based materials with high strength characteristics, high hardness, and increased heat resistance. In this research, we proposed an approach to obtain a MMC material using the surface structuring process, ALD (Atomic Layer Deposition) and powder metallurgy method. The developed approach provides a composite with TiC nanostructures (1-5 nm) uniformly distributed throughout the Ni matrix. The absence of interphase boundaries between the Ni matrix particles and carbide nanostructures made it possible to minimize the internal porosity of the sample. This is due to the strength of the interphase boundaries between the matrix and the reinforcing phase in the composite and to the solidity of the structure. As a result, the created material effectively resists plastic deformation and stress. This allows not only to enhance the strength properties of the composite, but also to maintain the MMC plasticity, which increases its processing ability.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3