Optimization of short-term wind power prediction of Multi-kernel Extreme Learning Machine based on Sparrow Search Algorithm

Author:

Wang Fan,Gao Guige

Abstract

Abstract Aiming at the problem that the single kernel function of kernel extreme learning machine (KELM) cannot adapt to the variable actual wind power. This paper proposes a modified prediction model which can increase the accuracy of prediction. The prediction model uses multiple kernel functions instead of a single kernel function and optimizes the kernel parameters by using a sparrow search algorithm (SSA). Finally, through the simulation and comparison experiments, the proposed prediction model has better prediction accuracy than the conventional prediction model.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference8 articles.

1. Sparrow search algorithm optimizes short-term wind power prediction of BP neural networks [J];Liu;Journal of Shanghai Electric and Electrical Technology University, 2020

2. Progress in short-term prediction technology of wind power [J];Tang;Journal of Mechanical Engineering,2022

3. Short-term wind power prediction based on SSA optimized variational mode decomposition and hybrid kernel limit learning machine [J];Wang

4. Short-term wind power prediction based on convolutional long, short-term memory neural networks [J];Li;Solar Energy Journal,2021

5. Ultra-short-term wind electric power prediction method based on the OVMD-SSA-DELM-GM model [J];Zeng;Power Grid Technology,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3