24Mg + 12C fusion reaching the no coupling limit far below the barrier

Author:

Del Fabbro M,Montagnoli G,Stefanini A M,Jiang C L,Hagino K,Niola F,Brugnara D,Čolović P,Colucci G,Corradi L,Depalo R,Fioretto E,Goasduff A,Pasqualato G,Scarlassara F,Szilner S,Zanon I

Abstract

Abstract In the present work the fusion cross section of the 12C+24Mg system has been measured down to energies far below the coulomb barrier around 4μb. This system is slightly heavier than those of astrophysical interest, like 12C+12C and 16O+16O. The data points highlight the presence of hindrance in 12C+24Mg because the excitation function is over-estimated by standard Coupled-Channels calculations, and a clear maximum of the S factor has been observed. The cross section at hindrance threshold is found to be remarkably large (σ ≈0.75mb). The S-factor maximum is nicely fitted using both an empirical interpolation in the spirit of the adiabatic model, and the hindrance parametrisation. The data far below the barrier may suggest that the coupling strengths gradually decrease and vanish, so that the excitation function seems to be well reproduced by a simple one-dimensional tunnelling through the potential barrier in that energy range. On the other hand, the equally good fit obtained with the hindrance model, indicates that discriminating between the two approaches would require further precise measurements at slightly lower energies.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3