The use of Wasserstein Generative Adversarial Networks in searches for new resonances at the LHC.

Author:

Lieberman Benjamin,Dahbi Salah-Eddine,Mellado Bruce

Abstract

Abstract In the search for physics beyond the standard model, machine learning classifiers provide methods for extracting signals from background processes in data produced at the LHC. Semi-supervised machine learning models are trained on a labeled background and unlabelled signal. When using semi-supervised techniques in the training of machine learning models, over-training can lead to background events incorrectly being labeled as signal events. The extent of false signals generated must therefore be quantified before semi-supervised techniques can be used in resonance searches. In this study, a frequentest methodology is presented to quantify the extent of fake signals generated in the training of semi supervised DNN classifiers when confronting side-bands and the signal regions. The use of a WGAN is explored as a machine learning based data generator.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semi-supervised lung nodule detection with adversarial learning;Multimedia Tools and Applications;2024-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3