Analytical and experimental determination of gravity and moment of inertia using a physical pendulum

Author:

Cristiano K L,Triana D A,Ortíz R,Pico M,Estupiñán A F

Abstract

Abstract Searching to encourage and increase the desire of students to seek a vocation in the study of engineering and science, we wanted to implement and validate experimentally and numerically, the study of the movement of a mechanical oscillator using, in this case, a physical pendulum, formed by a bar and a disk. In this article has done the study the physical pendulum, combining a methodology that involves an experimental arrangement and the implementation of simulations developed in Python, with the aim objective of offering to students a visual and interactive experience, so that they can understand in a simpler way topics covered in the theoretical physics course, in such a way that is different from the typical physical-mathematical formalism. This study was carried out with low cost materials and easy access, in addition to the great social impact that I had against the acceptance and assessment by the students with whom this work was applied. This work was developed in three phases: first, to measure the period of oscillation of a physical pendulum experimentally. Second, the approach of the analytical model to compare with the experimental results. Third, the development of a dynamic simulator according to the predictions of the theoretical model. The students found a didactic and different way of studying the physical pendulum. Finally, it was possible to demonstrate a self-consistency between the experimental and numerical results of the system studied in this work.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing compound pendulum data;European Journal of Physics;2022-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3