Analysis of contamination level of gases generated during the surface cleaning process of metal sheets with low-pressure cold plasma

Author:

López L M,Fajardo J I,Carrasquero E J,Villavicencio I J,López C P

Abstract

Abstract The research addresses an analysis of the level of contamination generated by the gases produced when applying low-pressure cold plasma in a cleaning process of metal sheets used in the manufacture of white goods. A mixture of argon and oxygen ionized gases at 50% was utilized to break down the lubricating oil molecules deposited on the surface of the sheet metal. A statistically significant number of samples were selected, with different volumes of oil on the surface, between 6 ml and 34 ml. The samples were later subjected to a plasma discharge with a time of 72 s, a gas pressure of 0.6 bar and 50% power to determine the correlation of the oil volume with the levels of gases generated by the discharge, maintaining the degree of surface cleanliness, as given by contact angle values between 67.5 and 79 degrees, constant. For the analysis of results a Pearson correlation was applied for each detected gas. An analysis was later conducted of the relationship between the degree of cleanliness of the metallic surface, as given by contact angles at 16, 36 and 53 degrees, with the levels of the gases generated by the plasma discharge, keeping the volume of the lubricating oil on the surface constant at 5 ml. For the analyses, statistical tests were carried out to find the correlation between the predictor variables and the dependent variable to establish a multivariate linear statistical model. The results allowed the behavior of the level of contamination to be determined, establishing that the volume of oil does not influence the level of the gases generated by the use of low-pressure cold plasma. The results obtained allow us to understand the relationship between the contact angle that represents the quality of surface cleaning of oil-impregnated sheet metal and the level of contamination generated in the process.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3