Semi-automatic detection of the evolutionary forms of visceral leishmaniasis in microscopic blood smears

Author:

Salazar J,Vera M,Huérfano Y,Vera M I,Gelvez-Almeida E,Valbuena O

Abstract

Abstract Leishmaniasis is a complex group of diseases caused by obligate unicellular and intracellular eukaryotic protozoa of the leishmania genus. Leishmania species generate diverse syndromes ranging from skin ulcers of spontaneous resolution to fatal visceral disease. These syndromes belong to three categories: visceral leishmaniasis, cutaneous leishmaniasis and mucosal leishmaniasis. The visceral leishmaniasis is based on the reticuloendothelial system producing hepatomegaly, splenomegaly and lymphadenopathy. In the present article, a semiautomatic segmentation strategy is proposed to obtain the segmentations of the evolutionary shapes of visceral leishmaniasis called parasites, specifically of the type amastigote and promastigote. For this purpose, the optical microscopy images containing said evolutionary shapes, which are generated from a blood smear, are subjected to a process of transformation of the color intensity space into a space of intensity in gray levels that facilitate their subsequent preprocessing and adaptation. In the preprocessing stage, smoothing filters and edge detectors are used to enhance the optical microscopy images. In a complementary way, a segmentation technique that groups the pixels corresponding to each one of the parasites, presents in the considered images, is applied. The results reveal a high correspondence between the available manual segmentations and the semi-automatic segmentations which are useful for the characterization of the parasites. The obtained segmentations let us to calculate areas and perimeters associated with the parasites segmented. These results are very important in clinical context where both the area and perimeter calculated are vital for monitoring the development of visceral leishmaniasis.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference14 articles.

1. Automatic segmentation of leishmania parasite in microscopic images using a modified cv level set method;Farahi;Proc. SPIE,2015

2. Segmentation of brain tumors using a semi-automatic computational strategy;Vera;J. Phys.: Conf. Ser.,2019

3. Cv level set based cell image segmentation using color filter and morphology;Tan;Proc. Int. Conf. on Information Sci. Electronics and Electrical Eng.,2014

4. Unsupervised segmentation based on robust estimation and color active contour models;Yang;IEEE Trans. on Inf. Tech. in Biomedicine,2005

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3