Experimental methodology for the characterization of a hydrogen-fuelled Pressure Gain Combustor

Author:

Tempesti C,Romani L,Ciampolini M,Hakuri O,Ciccateri F,Ferrara G

Abstract

Abstract Gas turbines have been a key technology in many industrial sectors for over 50 years and they will continue to play a crucial role in the energetic scenario. Nevertheless, these systems are approaching their efficiency limits and performance improvements are becoming increasingly difficult to achieve. In this context, Pressure Gain Combustion (PGC) has emerged as a promising technology: replacing the isobaric combustion with a quasi-isochoric process creates a rise in total pressure across the combustion chamber, enhancing their potential performances. However, it is a complex process influenced by combustion chemistry, heat transfer, and fluid dynamics, and its unsteadiness increases the complexity of measurement campaigns. Thus, several challenges still need to be addressed for its development. This paper shows the experimental methodology followed to characterize an innovative deflagrative-based PGC fuelled with 100% hydrogen. Dynamic pressure sensors were installed inside, upstream, and downstream of the combustion chamber and acquired at a high frequency (1 MHz) to describe in detail the process. Downstream the combustor, an orifice simulated the pressure drop across the turbine. Different fuel pressure has been tested, varying the operating parameters and the position of the pressure sensors inside the chamber. For each configuration, a detailed analysis of the mean pressure trends and cycle-to-cycle variation was carried out and will help optimize the system in the following tasks of the project. The experimental methodology described can be used to better investigate the physics of Pressure Gain Combustors and allow complete exploitation of their potentiality in terms of work extracted, resource consumption, and pollutant emission.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3