CFD-3D and 1D modeling of fuel cell powertrain for a hydrogen vehicle

Author:

Marra Carmine,Corda Giuseppe,d’Adamo Alessandro

Abstract

Abstract As it is known the transport sector represents a major contributor to climate change. In particular, private transport contributes to the degradation of the air quality inside the cities or the residential areas. To address this issue, a progressive reduction of the use of fossil fuels as a primary energy source for these vehicles and the promotion of cleaner powertrain alternatives is in order. This study focuses on designing a fuel cell powertrain for a hydrogen-powered passenger car using numerical modeling. To this purpose, we initially modeled a base fuel cell and optimized its performance by using various materials for the bipolar plates and adjusting the platinum loading between the anode and cathode. Then, a preliminary design of the new powertrain has been proposed in order to achieve a nominal power of 100 kW and it has been tested on a WLTP 3b homologation cycle. Finally, we have been able to numerically estimate the behavior of the three main feeding line: hydrogen line, air line and cooling line. In conclusion, the obtained results demonstrate how numerical modelling can be successfully used in the design of complex systems such as those related to alternative energy. This work also provides a solid basis for the future development of increasingly efficient and environmentally friendly hydrogen vehicles.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3