Author:
Yin Jinming,Zhou Haibo,Zhang Haoxin,Li Chenming,Sun Guoqing
Abstract
Abstract
In the traditional direct visual odometry, it is difficult to satisfy the photometric invariant assumption due to the influence of illumination changes in the real environment, which will lead to errors and drift. This paper proposes an improved direct visual odometry system, which combines luminosity and depth information. The algorithm proposed in this paper uses Kinect 2 to collect RGB images with the corresponding depth information, and selects points with large changes of gray gradient to construct a luminosity error function and uses the corresponding depth information to construct a depth error function. The two error functions are merged into one function and converted into the least squares function of the pose of camera, the Levenberg-Marquardt algorithm is used to solve the camera pose. Finally, the Graph optimization theory and the g2o library are used to optimize the initial pose. Experiments show that the algorithm can reduce the error to a certain extent and reduce the drift caused by illumination changes.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献