Prior Knowledge-guided Hierarchical Action Quality Assessment with 3D Convolution and Attention Mechanism

Author:

Zhou Haoyang,Hou Teng,Li Jitao

Abstract

Abstract Recently, there has been a growing interest in the field of computer vision and deep learning regarding a newly emerging problem known as action quality assessment (AQA). However, most researchers still rely on the traditional approach of using models from the video action recognition field. Unfortunately, this approach overlooks crucial features in AQA, such as movement fluency and degree of completion. Alternatively, some researchers have employed the transformer paradigm to capture action details and overall action integrity, but the high computational cost associated with transformers makes them impractical for real-time tasks. Due to the diversity of action types, it is challenging to rely solely on a shared model for quality assessment of various types of actions. To address these issues, we propose a novel network structure for AQA, which is the first to integrate multi-model capabilities through a classification model. Specifically, we utilize a pre-trained I3D model equipped with a self-attention block for classification. This allows us to evaluate various categories of actions using just one model. Furthermore, we introduce self-attention mechanisms and multi-head attention into the traditional convolutional neural network. By systematically replacing the last few layers of the conventional convolutional network, our model gains a greater ability to sense the global coordination of different actions. We have verified the effectiveness of our approach on the AQA-7 dataset. In comparison to other popular models, our model achieves satisfactory performance while maintaining a low computational cost.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GYMetricPose: A light-weight angle-based graph adaptation for action quality assessment;2024 IEEE 37th International Symposium on Computer-Based Medical Systems (CBMS);2024-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3