Filling of missing values of voltage data based on ResIOFNN

Author:

Cai Rong,Tian Jiang,Zhao Qi,Wang Yi,Lv Yang,Wu Haiwei,Ding Hong’en,Yang Guang,Chen Guangyu

Abstract

Abstract With the increasing scale of power Systems, the amount of data that needs to be collected increases exponentially, and data collection equipment will inevitably experience different degrees of data loss. Traditional missing data filling algorithms, such as Expectation Maximization Algorithm (EM) and K Nearest Neighbors (KNN), have low accuracy when dealing with missing data. Given the limitations of the current time series data-filling model, this paper combines the idea of deep learning technology. It proposes an improved voltage missing value-filling algorithm based on the Fourier neural network model. The model can combine the future and past information of the missing data to complete the filling work on the missing data set, which improves the precision of voltage data filling. The calculation example adopts the data of the real power grid for simulation analysis, and the calculation outcomes prove the data-filling method’s high level of fill accuracy.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3