Application of locally linear embedding algorithm on hotel data text classification

Author:

Huang Jinming

Abstract

Abstract As a non-linear dimension reduction method, manifold learning algorithm projects high-dimensional input to a low-dimensional space by maintaining the local structure of the data, and discovers the inherent geometric structure hidden in the data. In this paper, we attempt to apply the manifold learning algorithm to the field of Chinese text classification, and use the locally linear embedding algorithm to reduce the dimension of the ctrip hotel review data set. Then, we utilize extreme gradient boosting (XGBoost) and logistic regression to classify the text. Experimental results show that it is effective and feasible to use manifold learning algorithm for text classification. Moreover, the classification effect of logistic regression is better than XGBoost in the text classification of hotel reviews.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference12 articles.

1. Literature review of feature dimension reduction in text Categorization;Chen;Journal of the China Society for Scientific and Technical Information,2006

2. Text manifold based on Semantic Analysis;Yang;Acta Electronica Sinica,2009

3. Text categorization algorithm based on manifold learning and support vector machines;Ren;Computer Science,2012

4. The manifold learning algorithm’s application in the Chinese text clustering;Wang;Journal of Shandong University (Engineering Science),2012

5. Text categorization algorithm based on non-linear manifold learning and k-NN;Zhang;Journal of Shandong University (Engineering Science),2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3