Prediction method of silicon content in blast furnace hot metal based on IPSO-HKELM

Author:

Hu Kaifei,Hu Qinghe,Liu Chongmin,Zhang Shuang

Abstract

Abstract Aiming at the problem that the silicon content of molten iron can not be detected online, a model for predicting silicon content in molten iron based on Hybrid Kernel Extreme Learning Machine optimized by Improved Particle Swarm Optimization Algorithm (IPSO-HKELM) is proposed. Firstly, the input variables are reduced by PCA, and then the prediction model of molten iron content based on HKELM is established. In this paper, PSO is used to optimize the kernel parameters of HKELM. Aiming at the problem that PSO is easy to fall into local optimum, the Inertia weight reduced with the number of iterations and the random back-based learning mutation operation are introduced, so that PSO can jump out of the local minimum point more easily and get the optimal result. Experiments show that the prediction model of silicon-based silicon content based on IPSO-HKELM has high prediction accuracy and short time, which can meet the actual production needs.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3