Research on solitons’ interactions in one-dimensional indium chains on Si(111) surfaces

Author:

Yao Y,Luo C J,Wang X X,Zhang H

Abstract

Abstract Solitons have garnered significant attention across various fields, yet a contentious debate persists regarding the precise structure of solitons on indium chains. Currently, multiple forms of solitons in one-dimensional atomic chains have been reported. STM provides an effective means to study the precise atomic structure of solitons, particularly their dynamics and interactions. However, limited research has been conducted on soliton interactions and soliton-chain interactions, despite their profound impact on relative soliton motions and the overall physical properties of the system. In this work, we characterized the structures of the soliton dimer and trimer, observed the displacements induced by the soliton entity and statisticized the dynamic behaviors of soliton dimers over time evolution or temperature. To reveal the soliton mechanism, we further utilized STM to investigate the CDWs between two solitons when two monomers were encountered. Additionally, we achieved the manipulation of the monomer on the indium chain by the STM tip. Our work serves as an important approach to elucidate interactions in correlated electronic systems and advance the development of potential topological soliton computers.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference18 articles.

1. Distinct spinon and holon dispersions in photoemission spectral functions from one-dimensional;Kim;SrCuO2. Nat. Phys.,2006

2. Intersubband plasmons in the quantum limit in gated and aligned carbon nanotubes;Bockrath;Nature (London),1999

3. Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures;Ishii;Nature (London),2003

4. Instability and charge density wave of metallic quantum chains on a silicon surface;Yeom;Phys. Rev. Lett.,1999

5. Atomically precise self-assembly of one-dimensional structures on silicon;Barke;Appl. Surf. Sci.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3