The Research of Asymptotic Average Shadowing Property and Pointwise Lipschitz Shadowing Property

Author:

Bei Caixia,Ji Zhanjiang

Abstract

Abstract We investigated the dynamical relationship between asymptotic average shadow ing property and pointwise Lipschitz shadowing property on the sequence map and the limit map. Then, we have: (1)Suppose {gn } strongly uniformly converge to g · gn has asymptotic average shadowing property implies g has asymptotic average shadowing property. (2) Suppose {gn } strongly uniformly converge to g · gn has fine pointwise shadowing property implies g has pointwise Lipschitz shadowing property. The above results promote the theory development of asymptotic average shadowing property and pointwise Lipschitz shadowing property.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference17 articles.

1. Uniform covergence and transitivity;Heriberto;Chaos Solitions Fractals,2008

2. Strongly uniform convergence and some dynamical properties;Zeng;Journal of Guangxi University(Natural Science Edition),2008

3. The sensitive dependence on initial conditions and equicontinuity under strongly uniform convergence;Wang;Journal of Zhejiang University(Science Edition),2012

4. Uniform covergence and chaotic behavior;Raghib;Nonlinear Analysis: Theory Methods Applications,2006

5. The research of mixing property under the condition of strong uniform convergence in metric G-spaces;Ji;Mathematics in Practice and Theory,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3