A Dimensionality Reduction Model for Complex Data Grouping

Author:

Yang Xiang,Xiaojun Chen,cheng Luo

Abstract

Abstract Given the existing packet dimensionality reduction model, the simple distance hypothesis is only used as a simple assumption that there is a certain relationship between packet data. This document proposes to share information between packet data with relevant random measures as a priori. We explicitly calculated the Lévy measure of the mixed random measure and offered the inference steps of detailed parameter a posteriori. Compared with the traditional method, the grouping dimensionality reduction model can achieve faster convergence and can well maintain the original information of data. The experimental results on the public dataset show that the grouping dimensionality reduction model is an effective dimensionality reduction algorithm and can be employed to extract characteristics on big data.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference14 articles.

1. Linear dimensionality reduction: Survey, insights, and generalizations;Cunningham;The Journal of Machine Learning Research,2015

2. Convex optimizations for distance metric learning and pattern classification [applications corner];Weinberger;IEEE Signal Processing Magazine,2010

3. Classification and regression by randomForest;Liaw;R news.,2002

4. Dimension reduction in text classification with support vector machines;Kim;Journal of Machine Learning Research,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3