Author:
Olarve R S,Dela Torre H M,Foronda J R,Santos M G,Sajor N J,Lopez T B,Haygood K J,Santos G N
Abstract
Abstract
Detection of aldehydes such as pentanal, hexanal, octanal, and nonanal are studied with the use of nanostructured zinc oxide (ZnO) as sensing element. ZnO nanowires synthesized at optimized growth parameters using horizontal vapor phase growth (HVPG) technique was used due to its unique properties in gas sensing applications. Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray (EDX) were used to verify the growth of ZnO nanowire structures. Further characterization using Source Meter was used to measure its resistance and resistivity based on the I-V graph. The sensor substrate wire set-up is connected to the Source Meter for resistance measurements as exposed to the different gas concentration of aldehydes. Gas sensing measurements were done at the static headspace gas concentration of the identified aldehydes. The sensor response of nanostructured ZnO-based gas sensor towards different gas concentrations ranges from 5.84% to 38.08%. Response time varies but it was observed that octanal gas has the longest response while pentanal has the fastest response.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献