Author:
Gazizov Almaz R,Salakhov Myakzyum Kh,Kharintsev Sergey S
Abstract
Abstract
Anti-Stokes Raman scattering is one of the mechanisms that lie behind an optical refrigeration due to release of photons with greater energy than of incoming photons. To achieve a cooling regime the enhancement of anti-Stokes scattering is necessary, since spontaneous Stokes scattering dominates over anti-Stokes scattering under normal conditions. Here, we investigate the opportunity of enhancement of spontaneous anti-Stokes Raman scattering in defect-enriched carbon film by means of localized plasmon resonances. In our simulations, incoherence of Raman scattering results in excess of anti-Stokes intensity over Stokes one. However, when the field is localized within the phonon coherence volume (coherent regime), the anti-Stokes intensity is lower compared to Stokes one. The provided analysis shows that plasmon-enhanced anti-Stokes Raman scattering can be achieved in highly-defective carbon films. The results are beneficial for Raman-based temperature measurements on the nanoscale.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献