Application research of a data stream clustering algorithm in network security defense

Author:

Zhu Canshi,Wang Xiaoyang,Zhu Lin

Abstract

Abstract The traditional intrusion detection system feature model is based on static data mining. Its mining algorithm relies on too many assumptions, which makes it difficult for intrusion detection systems to adapt to dynamic and real-time system detection requirements. Using attenuated sliding window technology, data stream mining technology and fusion technology with intrusion detection system, a data flow clustering algorithm based on attenuated sliding window is designed to improve and optimize the feature pattern extraction method of intrusion detection system to solve the dynamics of intrusion detection system. Through algorithm design, algorithm application and intrusion detection system simulation verification, the feasibility and accuracy of the algorithm and the optimized intrusion detection system are proved.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Data stream sliding window clustering algorithm applied in IDS [J];Lin;Computer Engineering and Applications, China,2014

2. Strategies for data stream mining method applied in anomaly detection [J];Ruxia,2018

3. FIDOOP-DP: Implementation of Data Partitioning in Frequent Itemset on Bigdata using Hadoop Pseudo Distributed Environment [J];Rohini;International Journal of Scientific Research in Science, Engineering and Technology,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3