Abstract
Abstract
The bridge consists of liquid held by surface tension forces between two inclined tubes in an LNG heat exchanger. The shape of the bridge is calculated by the hydrostatic equation, which is reduced to a nonlinear integral equation and resolved by the Newton method. The velocity and temperature fields in the bridge are described by the Navier-Stokes and energy equations, respectively. They are reduced to the boundary integral equations and calculated by the method of boundary elements. Heat transfer coefficient is calculated for evaporating bridge and the length of total bridge evaporation is estimated.
Subject
General Physics and Astronomy