Monitoring and control of polymer production line based on machine learning

Author:

Abdurakipov S

Abstract

Abstract The work is devoted to the development of an application for monitoring and controlling the state of equipment (extruder) for the petrochemical industry based on sensor readings using a machine learning model. The statistical relationships of the technological process parameters are analyzed, the most significant parameters influencing the occurrence of failures are determined using SHAP values. The hypotheses regarding the effectiveness of various machine learning algorithms in relation to the real problem of predicting the technical state of the extruder are tested. A gradient boosting model has been developed to predict the probability of extruder shutdown due to the formation of polypropylene agglomerates. The developed application allows interpreting the results of the model, which makes it possible to select the most important process parameters that have the greatest impact on the probability of extruder failure, and also proposing a prototype of an extruder monitoring system based on sensor readings using a machine learning model.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3