Abstract
Abstract
The present paper reports on the investigation of unsteady combustion of a methane-air mixture, including combustion at increased pressure in the combustion chamber and increased temperature of mixture heating for a model gas-turbine swirl burner based on a design by Turbomeca. To measure the velocity and OH fluorescence fields in the flows a combination of stereoscopic PIV and acetone PLIF systems is used. In all cases, the flow dynamics is associated with the movement of large-scale vortex structures in the inner and outer mixing layers and the flow structure corresponds to a swirling jet with a central recirculation zone containing combustion products. An increase in the heating temperature of the mixture and pressure in the combustion chamber leads to a periodic partial separation of the flame from the model swirl nozzle. However, the flow of fuel through the central channel will stabilize the flame.
Subject
General Physics and Astronomy