Author:
Kritsuk Alexei G.,Yee H. C.,Sjögreen Björn,Kotov Dmitry
Abstract
Abstract
A class of spatially seventh-order nonlinear filter methods with adaptive dissipation control developed by Yee & Sjögreen [1, 2] is tested on three-dimensional subsonic turbulence simulations with stochastic forcing. The Euler equations are solved using the Strang operator splitting of the homogeneous part of the equations and the stochastic forcing term, with an ODE solver used to integrate the latter. Both Ducros et al. and Kennedy-Gruber skew-symmetric split formulations of the inviscid flux derivatives are considered to minimize the use of numerical dissipation. The nonlinear filter methods are shown to be numerically stable for this application at least up to an rms Mach number of 0.6. The performance and accuracy of this numerical approach are compared with those of second order TVD and fifth and seventh order WENO methods. The nonlinear filter methods are shown to be substantially more computationally efficient, delivering a superior spectral bandwidth compared to the standalone TVD and WENO methods.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献