Comparison of Statistical Estimators for Estimating the Orders of Markov Chains

Author:

Meng Jingxiang

Abstract

Abstract High order discrete Markov chain is essential to analyze the dependency structure of data sets. To apply Markov chain correctly, even though the true order is an unknown parameter, statisticians have developed multiple order estimators. It is natural to identify the strongest order estimators under different parameter combinations. Aim for evaluating the performance of estimators, we study four of them in this paper: Akaike information criteria (AIC), Bayesian information criteria (BIC), Maximal fluctuation estimation method (PS), and approximate χ 2 − distribution method (Dk ). We simulated Cr × C transition matrices to generate word-count-based Markov sequences with the most straightforward initial distribution. We found PS and Dk give more accurate discrete Markov order estimation. Although AIC and BIC are commonly applied, their performances are not the most accurate. The accuracy declines approximately exponentially as the Markov model gets more complex, i.e. r ≥ 1 and C ≥ 3. AIC’s accuracy is higher when the Markov chain length is relatively small, but Dk yields a slightly higher accuracy under the same setting. PS give a more reasonable estimation when Markov order is the variable, i.e. 1 ≥ r ≥ 3. Dk gives more reasonable estimations when the length L and alphabet size C are variable, i.e. 150 ≥ L ≥ 800 and 3 ≥ C ≥ 5.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3