Author:
Medina I,Hernández-Gómez JJ,Miguel CR Torres-San,Couder-Castañeda C,Orozco-del-Castillo MG,Grageda-Arellano JI
Abstract
Abstract
Considering the continuous increase of demands in satellite communications, it is imperative to determine systems with higher bandwidths. Furthermore, miniaturization trends coming from the development of nanosatellites as CubeSat’s, constitute great restrictions to their design. Optical communications have the potential to lead with current data rates requirements. Nevertheless, the establishment of ground-LEO (Low Earth Orbit) optical links poses several challenges such as very strict and accurate tracking mechanisms, effects provoked due to the environmental conditions on the light beam as well as attenuation and Doppler effects. In this work, the precision of the tracking mechanisms is tackled by employing artificial vision as a proposal for a fine tracking system for an optical ground station to be able to locate a LEO CubeSat, so to proceed with data acquisition and tracking stages. The innovative and highly efficient algorithm herein developed for fine pointing is implemented in LabVIEW® as an example.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献