Numerical simulation of gas propagation process behind a shock wave during optical breakdown of air in a cylindrical channel

Author:

Sattarov A G,Ziganshin B R,Sochnev A V,Nagulin K Y,Lapshin S V

Abstract

Abstract This paper substantiates the need to study processes during nanosecond optical breakdown inside a cylindrical channel, and gives an analogy between L. Sedov’s theory of point explosion and an optical breakdown. A variant of the evolution of a shock wave inside a cylindrical channel is proposed. Based on the solution of the problem of a point explosion with backpressure, a preliminary estimate of the gas pressure and velocity behind the shock front was obtained to set the initial conditions in Ansys Fluent. As a result of numerical simulation, the characteristics of the shock wave were calculated, and the distributions of the velocity, density and pressure of the gas behind the shock front were obtained. According to comparison of the experiments and results of numerical simulation, an estimate of the shock wave energy is given, which is from 8 to 16% of the energy of a nanosecond laser pulse. The results of the proposed method of numerical calculation are consistent with the experimental data for measuring the time of the shock wave exits from the channel and the target momentum at atmospheric pressure.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3